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Abstract

This report explores the intricacies involved in designing and implementing a
multi-legged interactive robot (MuLIR). Motivation to design such a robot came from
exposure to similar projects developed by the Mobile Robot Group atMIT's Artificial
Intelligence Laboratory.

Several goals were set before design began on MuLIR, these are listed in order of

importance:

1.) Design and Implementation must be possible in one semester.

2.) The final design must have six legs each with two degrees of freedom and
capable of variable speeds.

3.) The robot must be self-contained.

4a.) The robot must interact quickly with its environment.

4b.) The robot's control system must exhibit actions indicative of "higher
intelligence."

5.) The control system should be fault-tolerant.

6a.) The system should be easily modified to allow testing of new control
systems and actions.

6b.) The hardware should be easily extensible to support new motions and
Sensors.

MuLIR's control system is based on five Motorola M68HCS811E2 microprocessors
operating in parallel. Three of the processors are dedicated to controlling the legs (each
processor controls a left / right pair of legs), one to sensory input, and one for determining
MuLIR's "higher reasoning" and communicating with a host computer for code changes
and diagnostics. The control system is based on a new model of behavior called
subsumption architecture. Commands for movement are generated by the control
processor based on feedback provided by the leg processors and information about the
environment provided by the sensory processor. Each command is sent over a serial link
and is received by all processors, this allows for actions to occur in parallel.

Although time constraints prevented observation of MuLIR in full walking mode,
some interesting results were gained. Throughout the design process prototype legs were
created to ensure that the design goals would be met. Once the final prototype had been
approved, it was used to test the leg software. Once the leg software was perfected, the
prototype and software were used to simulate actual walking patterns. Theinterprocessor
communication software was also tested using several M6SHC11EVB boards. However,
at the time of this printing it is unknown whether the integrated system will operate as a
whole. It is possible to make some educated predictions about performance; the

assembled unit is capable of supporting and lifting its own weight. Again, using the



M68HCI11EVB board it is possible to test the legs in simple patterns to see whether the
robot will be able to lift its weight from a resting position and to see whether forward
motion is possible.

High expectations were set for this project, and even the basic results achieved
justify the cost of development in both time and money. MuLIR will provide a test bed
for future robotics projects whether they focus on mechanical, electrical, or computer
engineering. The hardware and software developed are highly modular and easily
extendible. An unexpected result of this project was the enjoyment experienced as the
project neared completion. MuLIR proved fun to play with and satisfied many childhood
dreams. It is the authors' hopes that anyone interested in robotics will be able to use
MuLIR to explore their own dreams.



Introduction

Mobile robots have wandered the halls of universities and R&D institutions for
years. Until recently, these robots have been developed with a top-down reasoning
strategy. This traditional approach is based on world modeling and planning In order for
a robot to move, it must know its location and state as well as the location and state of all
other objects in the world. Based on this information, the robot plans a series of actions
that achieve the intended motion. World modeling has great seductiveness for
researchers because of the guarantees and optimizations that are possible. Routines exist
that will guarantee that the generated plan will accomplish the task or prove that the task
is impossible. Furthermore, a plan may be optimized before execution. However, such
plans require vast computational resources and time. For these reasons, most traditional
robots have been large and cumbersome, often depending on external computers to
perform complex calculations. Perhaps the biggest problem with top-down reasoning is
the amount of time required to compute even simple plans. If the world changes from
when planning is initiated and when it is carried out, the plan may fail. These time
restraints led researchers to limit the robot's environment, but even then motion at speeds
of one foot per hour was not uncommon, and interactive robots were either cost
prohibitive or impossible.

A more biologically feasible solution is bottom-up programming With this
approach, sensorimotor skills replace higher-level thought processes as the basis for
intelligence. Inspiration came from studying insects, and how they navigate in real-time
in complex environments. For example, a fly buzzing around a room does not know
whose room it is in, where the exits are located, or what types of furniture are in the
room. It merely acts based on sensory inputs such as heat, odor, sound, light intensity,
and color. A fly does not have time to compute a complex plan for object avoidance
while flying. Researchers attempting to model insects' ability to quickly adjust to
environmental change developed a model calledsubsumption architecture.

Subsumption architecture was developed by Dr. Rodney Brooks and the Mobile
Robots Group at the MIT Artificial Intelligence Laboratory. Since its introduction in the
late 1980's, subsumption architecture has been steadily gaining support in the robotics
world. Subsumption architecture combines distributed real-time control with sensor-
triggered behaviors. Instead of judging the reliability of sensor readings, sensors are dealt
with implicitly in that they initiate behaviors. Since sensing is so closely linked to
actuation, behaviors can be viewed as simple reflexes. This intuitive leap means that

subsumption requires no world model and therefore is computationally simple.



Behaviors are layers of control systems with lower-level real-time behaviors (such
as "avoid objects") on the bottom and higher-level goal-oriented behaviors (such as "track
object") on the top. Appropriate behaviors are activated by sensors and run in parallel.
This allows conflicting sensor readings to be passed on as conflicting behaviors.
Conflicting behaviors are then resolved by subsumption. For a given state, a dominant
behavior is determined using prioritized arbitration. If two behaviors conflict, then the
higher-level behavior subsumes the lower-level, otherwise, both behaviors occur (called

behavior fusion).!

Sensors Behaviors

> Avoid
Wander

Light Search

IR Detector

Light Avoid
(Photocell

| Track Object

Figure 1: Subsumption Architecture with Behavior Fusion

S Control

(Microphone

S = Suppressor Node

MuLIR was designed to imitate an insect as closely as possible. It is hoped that
insight into interactive robotics will be gained by careful analysis ofMuLIR's behaviors.
As behaviors are added, complex new behaviors emerge; these new behaviors are the
results of behavior fusion or the combination of lower-level behaviors into more complex
parallel higher-level behaviors. Analysis of how insects interact with their environment
provides a good starting point for robotic behaviors.

The design for MuLIR was guided by a simple set of desired behaviors:

Behavior 1.) Avoid Collisions
Behavior 2.) Wander

Behavior 3.) Track Light / Hide
Behavior 4.) Track Sound / Hide
Behavior 5.) Track Object / Flee

I Jones. pp. 243 -251.



In order to realize these behaviors, processors were laid out so that response time
to sensory input would be minimized. Each leg processor controls a left / right pair of
legs. The processor waits for commands from the control processor or interrupts
generated by movement. Sensory input is received and analyzed by a dedicated sensory
processor. The control processor receives state information from the leg processor and
sensory processor and issues commands based on active behaviors.

The rest of this report explores the intricacies involved in designing and
implementing a walking mobile robot. The robot's basic design from hardware to
software impacts resultant behavior; therefore, careful analysis of the design process and
the reasons for design choices will be discussed. After design, the theory behind the
microprocessors and the software they run is discussed. Finally, implementation issues

will be addressed and results analyzed.



Design

When this project was beginning, several goals were set. These goals guided the
decisions that yielded MuLIR on both the hardware and software levels.

1.) Design and Implementation must be possible in one semester.

2.) The final design must have six legs each with two degrees of freedom and
capable of variable speeds.

3.) The robot must be self-contained.

4a.) The robot must interact quickly with its environment.

4b.) The robot's control system must exhibit actions indicative of "higher
intelligence."

5.) The control system should be fault-tolerant.

6a.) The system should be easily modified to allow testing of new control
systems and actions.

6b.) The hardware should be easily extensible to support new motions and

Sensors.

Furthermore, several desired behaviors were also defined:

1.) Avoid Collisions
2.) Wander

3.) Track Light / Hide
4.) Track Sound / Hide
5.) Track Object / Flee

Hardware:

It was determined that hardware design should proceed in the following order:

legs, chassis, sensors, and finally chip layout and wiring. Leg design began in late
September, 1993, although research began as early as the spring of 1992. Beyond the

goals set for the overall system, the following goals / requirements were set for leg

design:

1.) Simple modular design (easily replicated).

2.) Quick and easy access to parts.

3.) Variable speed and good top speed.

4.) High torque, the leg must be capable of supporting and moving the robot's
weight.

5.) As low current draw as possible especially when leg is not in motion.

6.) Small, compact, and light.

The original leg design was based on a cylindrical telescoping leg which was

capable of contracting and expanding along its primary length. This length change
enabled the leg to be easily lifted and moved forward. The leg was designed in three

parts: an outer shell which attached to a motor mounted on the main body, an inner shell



which moved up and down in channels set inside the outer shell, and a fixed protraction

which provided the leg's major length.

Chassis
Attachment
Motor Outer Shell
t )
Drive Screw
[ 1
L ]
Inner Shell
d L
Main Leg
/-x Length
—
\/
_—

U Foot
Switch

Figure 2: Telescoping Leg Design

Forward motion was achieved by contracting the leg until a sensor indicated full
contraction had occurred, the leg was then rotated from the base so that it pointed slightly
forwards, finally the leg was expanded until it reached maximum expansion or the foot
sensor indicated that the leg was on the ground. This design was chosen since it met the
defined goals and minimized the hardware and software required for walking. However,
once a prototype was built, it was discovered that the leg tended to become stuck in either
the compressed or expanded positions due to friction on the screw contacts. Also,
attaching the limit switches in the outer shell was difficult.

At this point in the design, new leg designs were considered. One of the more
simple solutions is shown below, but was rejected since it allows only one degree of

freedom and makes multiple gaits difficult.
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Figure 3: Simple Leg Design

In early January 1994, another satisfactory design was proposed. This design is
quite similar to the designs used by Genghis and Attila (two six legged robots developed
at MIT). The design is more complex than previous designs (yet simpler to machine), but
allows greater flexibility and control.

I —— \

Hip Motor

Gearbox

Robot Chassis

L ]
e | —

Occlusion Plates
Collar (without optical sensor)
Knee
——

I

Gearbox | 1] [
i Motor

Leg

%

Foot
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Figure 4: Early Hip / Knee Leg Design

N




This leg design consists of one DC gearhead motor (the hip) with its flattened
drive shaft protruding vertically down from the chassis. This motor swings the leg in an
arc from front to back, providing forward / backward motion similar to the telescoping
leg. An identical motor (the knee) is fixed to the shaft of the first, with its shaft
horizontal and parallel to the side of the robot. This motor swings the leg up / down in an
arc out to the side of the robot. The leg itself consists of a solid shaft fixed by a set screw
to the shaft of the knee motor. A foot switch at the end of the leg provides useful
feedback. A complete forward cycle consists of a coordinated effort between the hip and
knee. First, the leg is raised via the knee motor. Then the leg assembly is rotated
forwards by the hip motor. Finally, the leg is lowered by the knee motor until it reaches a
lower limit or touches the floor.

Early attempts at machining this leg were only minimally successful due to the
space constraints imposed by the feedback mechanisms. It was deemed desirable to
provide feedback with potentiometers since they provide continuous information which
can then be discretely sampled via an A/D convertet However, no suitable
potentiometers could be found that would easily interface with the chosen motors. A
decision was made to keep the motors due to the high cost of replacing them;
furthermore, the motors already in stock had low current demands and high torque.
Infrared optical sensors were chosen to replace the potentiometers, one pair on the knee
and one pair on the hip. They provided limit information and location at discrete points.

The following is the occlusion plate used in the optical sensor:
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Figure 5: Early Occlusion Plate

Again, problems occurred during machining. The sensor plates were too
complicated and large to be integrated into the leg design. To simplify the design, the
feedback loop from the knee was replaced with two limit switches (spring-loaded break-
before-make SPST), and the feedback loop from the hip was replaced with a simple
infrared optical sensor and one double-throw limit switch (spring-loaded break-before-
make SPDT). The resulting leg design is open-loop design when raising the leg; this was
deemed acceptable since it is only important to know if the leg is up, down, or has
touched the floor (provided by the floor switch).

Other problems with this design involved attaching the hip to the knee. The
motors have a flat face with three 6-32 tapped holes for mounting (the shaft protrudes
from the gearbox normal to this face). The early designs had a plate mounted to the face
of the knee motor which extended up, bent 90°, and bolted to a collar over the gearbox.
The collar then attached via a set screw to the shaft of the hip motor. While a collar was
found for an early prototype, it proved difficult to find enough of the exact size required.

A new design was proposed early in February 1994. The basic leg design was
kept, but the simplified feedback system was used, and a flat plate was introduced for
mounting the hip motor to the knee motor. The plate has a groove in the side which is
mounted against the gearbox. To connect the two motors, the shaft of the hip motor is

pinched between the plate and the gearbox of the knee motor. The plate has mounting
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holes for the knee limit switches, the optical encoder occlusion plate, and cables as well
as holes for mounting to the knee motor.

Front View Top View
| O

O o©
e

O

O

O

Figure 6: Knee Mounting Plate

Using the new design, a prototype was once again built and tested. When it was
deemed acceptable, six more copies were made. Extreme effort was made to ensure that
all copies were identical. The prototype was kept to be used for testing purposes. The
following is an in-depth analysis of the leg design from the bottom up.

The foot switch is a Hall-effect microswitch activated by a lever which depresses
a button on the switch body. This is mounted around the leg with two 0.875 4-40 screws
through 0.125” holes to a 0.75” x 1.25” x 0.125” plate. The foot-switch mounting plate is
cleared near its center for a 0.25” 4-40 machine screw which attaches it to the lower leg.
The side of the foot-switch mounting plate which contacts the leg has a groove milled on
the long dimension to cradle the 0.25” diameter shaft.

Knee end, / 6-32 set screw
Foot end of leg "\ Y
/|

(C Y p—— &9 -

foot-switch
mounting plate

F igure? Foot Switch
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The leg itself is an 0.25” diameter aluminum rod approximately 5.0” long. The
tapped hole for the foot-switch mounting plate is about 1.75” from the leg’s lower end.
The 0.125” hole for the shaft of the knee motor is 2.75” up from there (4.5” from the
floor if the leg is vertical). The leg is fixed to the flatted shaft of the knee motor with a
0.25” 6-32 set screw through a tapped hole in the top end of the leg.

The knee-hip junction is accomplished with a flat 1” x 1.5” x 0.125” aluminum
plate with holes positioned and cleared for mounting to the face of the knee gearbox. The
plate has a 0.125” groove in the side of the plate which is mounted against the knee’s
gearbox. The shaft of the hip motor can then be pinched between the plate and the
gearbox. The knee-hip plate also has three 0.25” holes within an inch of the knee shatft.
Two of these (one beneath and one to the right of the knee shaft) hold upper / lower limit
switches and the third is cleared for foot-switch wiring. Then one last hole must be added
to the knee-hip plate; a hole to accommodate 0.25” 4-40 machine screw must be drilled
and tapped in the top edge 1.0” from the groove for the hip shaft. This last hole is for
securing the hip’s occlusion plate. The hip motor is simply mounted by the face of its
gearbox to the chassis, with its shaft protruding below the body.

The most difficult portion of the leg assembly is the hip position feedback
implementation. Convenient material for the optical encoder disk is 0.040” sheet
aluminum. It is important that this disk have a constant outer radius of 1.25”. A 135° arc
of the circle must be cut to a smaller radius. The edges of this arc trigger the hip limit
switch at either end of its range of motion. Opposite the smaller radius arc, the disk is
slotted with a bandsaw at intervals of about 17° to put 8 slots in a 135° arc. The hole at
the encoder center is cleared to 0.125” for the hip shaft. 1.0” from this, on the line
including the center and parallel to that line defined by the limit-switch trigger corners, a

hole is cleared for the 4-40 screw which fixes the hip encoder disk to the knee-hip plate.
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Figure 8: Final Leg Design

Once the leg design was well under way, design of the chassis began. Several
considerations were involved in the layout of the chassis. First, it was necessary to
determine what sensors would be used to ensure that they would have good clearance.
Furthermore, it was necessary to estimate the total size of the electronics that would be
mounted on the inside of the robot. Other considerations such as battery size, leg
location, and balance also impacted the design. The front of the chassis was given a
curvature to provide a good spread for the infrared emitters. The sides of the chassis were
designed to be as high as the motors and allow for a cover. Also, access to the control
processor was provided through a data port at the rear of the chassis.

The chassis was cut and formed from 0.040" thick sheet aluminum. Joints are
secured with short 4-40 machine bolts and nuts. The resulting shape is a rectangle with
45° angled rear corners and a 60° arc of a circle at the front. For simplicity, all legs and
mount regions on the chassis are identical; the right side of the robot isnot a mirror image
of the left. Each leg mount region has the basic holes for mounting the hip motor. From
a top side viewpoint, there is a 0.25" diameter hole for the limit switch centered 1.125"
right of the hip shaft hole. Between these holes is another 0.25" hole for wiring to the
knee and foot. A rectangular hole for an "ear" of the optical sensor is 1.25" left of the

center of the hip shaft hole; a nearby hole accommodates the wires for this sensor. When
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the ear of the optical sensor is pushed through the rectangular hole and the housing is
flush against the underside of the chassis, the mounted occlusion plate passes smoothly
between the sensor emitter and receiver as the hip shaft turns. This first design proved
adequate, and it was quickly machined and bent into shape. (see Appendix C for a
diagram)

With the chassis complete, design moved to sensory input. The chassis design
specified where most sensors would be located. The more complex design considerations
included sensor range, sensor validation, and power consumption. The design and
behavior goals guided the sensor choices. Initially, six sensors were chosen: Infrared
proximity sensor, microphone, photocell, micro-switch, sonar, and Pyroelectric sensor.
The infrared proximity sensor consists of an IR emitter and receiver pair. The emitter is
simply a 940 nm IR LED which is pulsed at 40 KHz. The receiver is tuned via a PLL to
detect 940 nm light at 40 KHz; the Sharp GP1U52X receiver was chosen because it
included the IR photodetector, PLL, and an amplifier in a single package. The chassis
design allowed six detectors to be mounted on the front of the robot and two on either
side. The redundant sensors help the robot be fault tolerant since only a small percentage
of emitted light will be reflected. To increase the emitted signal strength and further
improve fault tolerance, two emitters are located on either side of a receiver. The IR
sensors allow Behavior 1 to be easily and reliably implemented. The IR emitter LEDs
require approximately 50 mA each, therefore an interface was designed to allow selective
control of which emitters are on at a given time. The 555 timer was chosen to generate
the 40 KHz pulses needed to drive the LEDs. The microphone allows the robot to
monitor and locate sounds in its environment, this allows Behavior 4 to be easily
implemented. Two unidirectional microphones, to be mounted approximately six inches
apart, were chosen to allow the robot to calculate sound direction via differential sound
intensity. Each microphone is amplified with a LM386 op-amp which is fed to the A/D
ports of the microprocessor. Photocells allow the robot to detect light; twoCdS cells
were chosen to allow differential calculation of light intensity thereby allowing Behavior
3 to be implemented.

The remaining three sensors were not implemented due to cost and time
considerations; however, a brief description of their purpose is included. In order to
improve fault tolerance in Behavior 1, micro-switches were included in the initial design.
Two switches would have been mounted on the left and right front plate of the chassis; a
"whisker" attached to the switches signals immanent collisions. The whiskers allow
detection of objects that do not reflect IR light very well. To even further improve

Behavior 1 and to aid in Behavior 5, a sonar sensor mounted on a stepper motor was also
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included in the original design. A Polaroid Sonar Ranging System was chosen since it
can interface with the microprocessor with only one transistor and two inverters and was
readily available. The system allows distance determination from 10.5 inches to over 35
feet with accuracy to within one half inch. However, the system does require a special
power system, and considerable processor time. Finally, aPyroelectric sensor was
desired to allow the robot to identify human heat patterns which would allow Behavior 5
to be elegantly implemented. Pyroelectric sensors are most commonly used in IR alarm
systems since they can detect heat sources in the human IR range; furthermore, the sensor
can detect motion and the direction of motion. The Pyroelectric sensor interfaces easily
with the microprocessor, but has a prohibitive cost.

The final sensor arrangement consisted of 10 IR receivers (six in front, and two on
both the left and right sides), 15 IR emitters (seven in front, and four on both the left and
right sides), two microphones (mounted directly to the front of the robot, each with a
semi-parabolic cover), and two photocells (mounted horizontally next to the
microphones). These sensors provide a good compromise between sensor information,
accuracy, cost, and development time.

As mechanical hardware design progressed, choices needed to be made
concerning the microprocessor and support hardware. Before the leg design was
complete, a decision was made to use the Motorola 6811 microprocessor to control the
legs. This decision was based on a cost versus performance analysis; the 6811
microprocessor includes built-in hardware to handle A/D conversions multiple timed
interrupts, timed events, and interprocessor communication as well as being low power
and easy to interface. The M68HCS811E2 series microprocessor was chosen since it
contains 256 bytes on on-chip ram and 2048 bytes EEPROM which allows the
microprocessor to operate alone without support / interface chips. The initial
specification was for one chip to control all six legs; however, it quickly became apparent
that each leg could require a large percentage of the processor's time. Furthermore, the
number of external pins on each microprocessor was limited. Therefore, it was decided
that each pair of legs (left / right) would be controlled by a separate 6811 microprocessor;
this decision allows considerable flexibility with a moderate cost increase.

A separate 6811 microprocessor was also chosen to control the sensors. This
choice allows for sensors to be easily extendible (when the initial choice was made, the
time intensive sonar sensor was still being considered). The sensor processor is
responsible for detecting immanent collisions and notifying the control processor as well

as performing differential sound and light intensity calculations.
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For the control processor, a Digital Signal Processor (DSP) was initially
considered, but was eventually rejected due to the complexity of interfacing the processor
with the other microprocessors and the complexity in effectively programming the device.
Another M68HC811E2 microprocessor was chosen. The control processor is configured
in an expanded mode which allows up to 64K of external memory to be used allowing for
complex control code. All microprocessors are clocked with separate 8 MHz clocks, with
a 2 MHz bus for memory access. In addition, the on-chip Serial Peripheral Interface
(SPI) system can be used to allow serial message passing between processors.

For each 6811 microprocessor, a printed circuit board containing all electronics
necessary to run the processor was purchased. These boards contain the additional logic
for accessing additional "off-chip" memory, RS232 communication, resetting the
microprocessor, and handling control signals. Each board vastly simplifies integrating
the 6811 into the robot.

In order to simplify motor control and interfacing, L.293B four channel push-pull
drivers were chosen to control the motors. Each integrated circuit can be configured as
two full H-bridges with a minimal addition of eight diodes per chip. The chips allow
direct interfacing with the 6811 microprocessor. Each H-bridge has a motor enable and a
direction control, as well as a separate power supply (up to 2A per channel) for driving
the motors. Therefore, one chip can control a complete leg, allowing independent hip and
knee motions.

The control processor also requires several chips for memory interface (which
were included in the 6811 printed circuit board): 74HC573 D-Type Latch and 74HC245
Bus Transceiver used to demultiplex the low address bits and data and the 74HC541
Buffer used to buffer the high address bits. These chips control the address and data fed
to the 62256-10 32K RAM and 27C256-15 32K EPROM. In addition, a MAX232 chip is
used to allow the control processor to communicate with a remote computer via a RS232
connection.

Two types of Programmable Array Logic (PAL)chips were used to provide
custom functions. These chips handle interrupt decoding, memory decoding, SPI
communication decoding, and other simple decoding functions. The PAL16L8 provides
eight combinatorial logic outputs, while the PAL16R4 has four such outputs and four
flip-flop outputs.
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Software:

Design for the software used to control the leg hardware began while the legs
were still under construction. To simplify the testing process, a prototype leg was built
and interfaced with a Motorola M68HC11EVB Evaluation Board The board and its
support software allowed easy simulations of the developing software control systems.
To meet the previously specified goals, assembly language was chosen to implement the
leg software. Each leg microprocessor is setup in single-chip mode, which allows the
code size to be a maximum of 2048 bytes. The on-chip RAM is only 256 bytes and must
satisfy the needs for both variables and stack space; therefore, careful design is needed to
avoid stack overflow and unpredictable results.

Careful consideration of the hardware available from the 6811 microprocessor led
to the choice of an interrupt driven system. The M68HC811E2 microprocessor has six
general external interrupts: !IRQ, !XIRQ, and four Input Capture (IC) pins which may be
configured as interrupts. Each leg microprocessor must control a left / right pair of legs
which means each leg can have a maximum of 2 identical interrupts. The !XIRQ line is
used to implement fault-tolerant system recovery and the !IRQ line is unused. Using the
IC inputs as interrupts, each leg has an interrupt which indicates that a movement limit
(right / left, up / down, or floor) has been reached and an interrupt which indicates that the
optical sensor used to track hip movements has triggered In order to differentiate
between the three movement limits, each limit signal is also sent to an input pin on the
microprocessor. When the interrupt is triggered, the interrupt handler reads the pins to

determine which limit(s) triggered the interrupt as shown below:

7

Bit 3
Control Function | Right Hip Direction

Left Hip Direction

1
Left Knee Direction

Port B

6 5 4 2 0
Right Hip Enable |Right Knee Direction| Right Knee Enable Left Hip Enable Left Knee Enable

Bit 7 6 5 4 3 2 1 0
Port C Active Interrupt Right Hip Right Floor Right Knee - Left Hip Left Floor Left Knee

Figure 9: Interrupt De-Multiplexing

The code must be carefully designed to allow proper handling of coincident
triggers. In order to facilitate quick handling of interrupt routines, the leg code uses the
wait (WAI) instruction to wait for an interrupt when it has nothing else to do; the wait
instruction prepares for an interrupt by pre-storing all data so that there is virtually no
delay in servicing an interrupt.

The timer overflow (TOF) interrupt, an internal interrupt, is used to tell the
microprocessor that a specified period of time has elapsed Using the TOF interrupt and
four Output Compare (OC) pins, it is possible to easily implement pulse width
modulation (PWM). Using PWM allows MuLIR to conserve power while driving the
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legs in an efficient manner. The OC pins are similar to the 6811's IC pins. These pins
allow for the output state of a pin to be changed when an internal state meets a pre-
defined trigger state and to optionally generate an internal interrupt. To implement
PWM, the leg code sets the TOF interrupt to trigger with a period of 32.768 ms or
approximately 30.5 times/second. When an overflow occurs, the 6811 generates an
interrupt which turns on the motor output and resets the OC to occur at some percentage
of the 32.768 ms period (theoretically this percentage is represented by a 16-bit value
between [1, 65535], but interrupt overhead and minimal required motor torque necessitate
a minimum of 19000). When the OC state matches the trigger state, motor output is
halted. This implementation defines Pulse-Width Ratio from 30% to 100%

The optical hip sensor produces interrupts whenever the hip rotates through a slot
in the occlusion plate. The plate was designed to contain 21! evenly spaced slots to allow
simple error checking (in the current design n = 3). However, the use of the optical
sensor does present several problems which have remained unsolved in this
implementation. The main problem is that the system cannot tell the difference between
clockwise and counter clockwise rotation. The motor's rotation is controlled by an output
from the microprocessor. By controlling the motor's direction of rotation, the
microprocessor assumes that the interrupts from the hip sensor are occurring in the same
direction; however, if for some reason the hip rotates in the opposite direction (due to
slippage or weight when the hip is not moving) then the system still assumes that the
rotation is in the original direction. Furthermore, if the hip stops while centered on a slot
in the occlusion plate, then minute fluctuations can create false interrupts. Due to these
limitations, the optical hip sensor is not relied on by the main control system. Hopefully,
future implementations will be able to correct these problems.

Once the leg microprocessor code had been developed and tested, design moved
to the sensor microprocessor. The four IC interrupts were used to notify the processor
when the IR detectors indicate a nearby object. One interrupt connects to the IR detectors
on the left side of the robot, one to the detectors on the right side, one to half the detectors
on the front right side, and the other to the detectors on the front left side. When an
object is detected, interrupt code is notified;, with this configuration there is no need to
continually poll the IR detectors to implement object avoidance. The microphones and
photocells are polled at constant intervals. The code reads a value from the left
microphone or photocell and then from the right. The difference between the two values
is used to indicate the direction of the sound / light source. A running average of the
sound / light levels is maintained to allow background noise to be eliminated. When the

input is above a variable threshold value (and lasts longer than a minimum delay), the

18



sensor microprocessor notifies the control microprocessor that an appropriate action
needs to be taken. In order to conserve power, the sensor microprocessor also enables the
IR emitters only when avoidance is needed (for example, the left / right side emitters are
only needed before MuLIR attempts to turn left or right). The code for polling the
microphones and photocells was optimized to be as fast as possible to allow for a high
sampling frequency (= 16 KHz, which by the Nyquist Theorem means frequencies up to
about 8 KHz may be sampled).

Due to the code size restrictions on the leg and sensor microprocessors, the
control microprocessor must make all decisions. The leg and sensor microprocessors
pass information to the control microprocessor via the 6811 SPI system. The control
microprocessor then sends commands to some subset of the microprocessors. The SPI
system is a serial connection shared by all processors. In order to send information, a
processor must first become master while the other processors become slaves. The five
microprocessors are thus linked in a multiple master - multiple slave system Conflicting
masters are prevented via hardware support in the PAL16L8. To become master a
processor checks to see if any other processor is current master. If one is, then the master
to be enters a spin lock until mastery is free. Once mastery is free, the microprocessor
asserts the master pin which tells the remaining processors that it is master. When the
master sends data the slaves queue off its clock (allowing data transfer approaching 2.0
Mbits / sec). When data is received an SPI interrupt is generated. Within the interrupt
routine, the receiving processors check that the data was addressed to them. If not, it is
ignored, otherwise the data is stored in a command queue to be acted upon on the next
command check. Using an interrupt driven system insures that a processor cannot miss
commands. When the command is processed, any additional information needed is read.
This is actually a race condition and could result in problems if multiple interrupts occur
before the receiving processor can read the data. The worst case of this race condition
occurs when the control processor tells a leg processor to notify it when a limit interrupt
is generated. If the leg processor receives a new command and then generates the limit
interrupt (which disables the SPI interrupt) before it can read in the data for the new
command; the leg processor waits to become master while the control processor is
sending the data. This additional data is lost; once the leg processor sends its notification
to the control processor, it waits for the additional data which has been lost resulting in a
deadlock. The probability of such a situation is low, and the control processor can reset
the deadlocked processor, but a better SPI algorithm would be a more practical solution.

The control processor's code was written in C to facilitate code readability and

modification. The code implements a subsumption architecture which requests
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information from the other processors and activates behaviors based on this information.
The control processor makes all motion decisions and is responsible for implementing
coordinated movement using hardcoded walking patterns. The control processor sends
messages to other processors via SPI and optionally to a remote computer over a RS-232
link via the Serial Communications Interface (SCI). The SCI system allows a user to
monitor behaviors implemented by the control processor, get register and memory dumps
from any processor, as well as download new code to replace the operating code of any
processor. The SCI interface allows quick debugging and code replacement. The control

processor supports the following SCI commands:

'0"  Select Main Processor

" Select Front Leg Processor
2" Select Middle Leg Processor
'3'  Select Back Leg Processor
'4'  Select Sensor Processor

'S All Legs

Al Alive (Ping Processor)
'D'"  <Start Address> <# bytes> Download

'E' <Start Address> Execute

'H' Halt Motion

T <L/R/B><0-8> <0/1> Move Leg

'M' <Start Address> <# bytes> Dump Memory

'P' <L/R/B> Retrieve Leg Position
'R’ Dump Registers

'S Retrieve Sensor Information
e Command List

The user must first choose a processor, and then may use the commands to change
the state of that processor. In order to prevent user mistakes, the code in the
microprocessor which implements code replacement cannot be replaced. This ensures
that a programmer mistake cannot permanently disable the system. Furthermore, if the
control processor can determine that another processor is not responding, it can reset that
processor via the ! XIRQ interrupt line.

While much care was taken in the design of the software control system, several
problems exist which should be summarized again. First, it is possible for a processor to
become deadlocked due to a race condition in the message passing code. Second, the
optical hip sensor may not be reliable due to the discrete nature of the signal. Replacing
this sensor with a continuous device such as a potentiometer would solve this problem.

Last, it is possible for the robot's IR detectors to miss objects causing a collision. This is
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due to the fact that not all objects reflect infrared light well; adding "whiskers" to the
front of the robot would most likely result in a more perfect solution. It is important to
stress the necessity for fault-tolerant systems in the design of arobotic system. Many
malfunctions can occur in a system that is subjected to unknown conditions. While care

was taken to implement a fault-tolerant system, improvements are always possible.
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Theory
Hardware:

The M68HC811E2 microprocessor consists of 11 distinct parts: Mode Control,
Clock Logic, Timer System, Bus Expansion / Parallel I/O Multiplexer, Serial Peripheral
Interface, Serial Communication Interface, EEPROM, RAM, and the CPU. The 6811 is
available in a number of different packages; this project used the 52-pin PLCC. (See
Appendix B for a pinout diagram) The 6811 has 110 instructions (requiring from 2 to 41
cycles), 57 registers, one 16-bit timer, 21 interrupt sources, an eight channel, 8-bit A/D
converter, up to 62 bits of I/O (configuration dependent), and supports six addressing
modes (Immediate, Direct, Extended, Indexed, Inherent, and Relative). Of the 57
registers, two are general-purpose, two are 16-bit index registers, three more implement
the stack pointer, program counter, and condition code registers while the rest are used as

output, control, and status registers. The basic programming model follows?

7 Accumulator A 0|7 Accumulator B 0| AB

15 Double Accumulator D of D
|15 Index Register X O| IX
|15 Index Register Y O| Y
|15 Stack Pointer 0| SP
|15 Program Counter 0| PC
S X HINZVC]|Cccr
\—Carry
Overflow
Zero
Negative
I Interrupt Mask
Half Carry
X Interrupt Mask
Stop Disable

Figure 10: 6811 Programming Model

Accumulators A and B are general-purpose 8-bit registers (they can also be treated
as a single 16-bit register, D). Index Registers X and Y provide a 16-bit indexing value
that can be added to an 9-bit offset provided in an instruction to create an effective
address. They may also be used as counters or temporary storage registers.

The 6811 is capable of operating in four modes: Single Chip, Expanded,
Bootstrap, and Special Test. Bootstrap mode is used to download initial startup code to a

chip. Special Test mode was not used in this project. The leg and sensor processors run

2 HCI11: M68HCI1 E Series. Motorola. p. 3-2.
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in Single Chip mode while the control processor runs in Expanded mode. The memory

map for the three modes is shown below .3

0x0000 256 bytes RAM
0x00FF X v
EXT
0x1000 : 64 byte Register Block
0x103F y 9
EXT
OXBFOO ----------+ |-----F-----
Boot ROM
itihried A N A B Special Mode Interrupt Vectors
OXBFFF f-----------| L---o-f----- p P
0xF800
2048 bytes EEPROM
OXSFFCOb———— ———
Interrupt Vectors
OXFFFF

Single Chip  Expanded Bootstrap
Figure 11: 6811 Memory Map

After a reset (either External through the !RESET pin or a Power-On Reset), all
system values are set to a default state and the system jumps to the address stored in the
reset vector located either the Interrupt Vector Table (Single Chip or Expanded mode) or
the Special Mode Interrupt Vector Table (Bootstrap or Special Test mode). The address
for all interrupt routines are stored in these tables. When an interrupt occurs it is serviced
following a hardware priority which ensures correct handling of multiple interrupts. Six
of the 21 interrupts are non-maskable and are handled in the following order: !'RESET,
Clock Monitor reset, COP watchdog reset, ! XIRQ, Illegal opcode interrupt, Software
Interrupt (SWI). The remain 15 interrupts may be selectively enabled via software, and
are handled in the following order: !'IRQ, Real-time interrupt (RTI), IC1 - 3, OC1-4, IC4,
Timer Overflow (TOF), Pulse Accumulator overflow, Pulse Accumulator input, SPI, SCI.
Any one of these interrupts may be given the highest priority; however, forMuLIR, the
default priority is optimal (changing the priority will cause serious problems). Interrupt
timing and ordering of all CPU registers on the stack are shown in the following

diagram:*

3 ibid. p. 4-5.
4 ibid. pp. A-10, 5-12.
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Processor
Setup
Time
) i
E |
lInterrupt \1 ‘ i OP = Opcode

SP = Stack Pointer
Address VA = Vector Address

‘ PC = New Program Counter
Data ) )—{0r)—~-)—ber—beri—vi)y—ivHh—(m0—xy—e )~ A )—~ecR—( ~)—{rsd—{Ls8—(o g

RIW
Memory Location CPU Registers
SP PCL
SP-1 PCH
SP-2 IYL
SP-3 IYH
SP-4 IXL
SP-5 IXH
SP-6 ACCA
SP-7 ACCB
SP-8 CCR

Figure 12: Interrupt Timing and Register to Stack Allocation

When a user requests a register dump, the main processor has the indicated
processor send its registers in this same order. Furthermore, a preemptive multitasking
system can be easily implemented on the 6811. The CPU's state can then be stored
simply by causing an interrupt, choosing a new stack, and returning. The Interactive C
(IC) compiler uses this method (available via anonymous ftp from the MIT Media
Laboratory server cherupakha.media.mit.edu). Future projects would benefit from using
a multitasking subsumption architecture.

In order to speed interrupt processing, leg and sensor code pre-stores the CPU
registers on the stack using the wait (WAI) instruction. The wait instruction pushes the
registers on the stack but does not return until it receives an interrupt. When the interrupt
occurs, it may be immediately serviced by finding the Vector Address and jumping to it.
Use of the wait instruction cuts the delay time to service an interrupt from 15 cycles to a
typical value of 3 cycles.

Serial communication with an external computer is provided through a universal
asynchronous receiver / transmitter (UART) on board the 6811. The UART sends control
signals to the MAX232 which turns the signals into RS232 signals. The control

processor may then be communicated with directly using ASCII control codes. The
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timing diagram for the SCI interface is presented below (VOTE: This is not an RS232

timing diagram).

| NEXT B
14 STOP BIT \‘4— START BIT >
TxD PIN Y
——— s I
Tx CLOCK | \
\
TRANSFER TO ! o M \ ‘
Tx SHIFTER — . i
| \ / |
TDRE N | /
N / ‘
} R rd

INSET: Expanded Timing Diagram
Tx CLOCK

S S e N |

|
|
TRANSFER TO '—| I
Tx SHIFTER : |
TDRE ! | 4

Figure 13: Serial Communication Interface (SCI) Timing

Interprocessor communications are implemented using the SPI system. The SPI
commands are a subset of the SCI commands. Processors communicate through a one-
way serial stream (the connection is actually full duplex, but in this implementation, only
the master processor sends data). In order to send data, a processor must first become a
"Master." The process of becoming a master is handled in hardware with a PAL16L&

To become a master, a processor checks if anyone else is master by reading the value on
the !SS (Slave Select) pin. If !SS is high, then the processor is free to become master fe.
it is not currently a slave). The processor then asserts S, its processor select pin (pin PDO0
for the leg and sensor processors, pin PA4 for the control processor), which goes to the
PAL16LS8. The PAL then performs these combinatorial logic operations to select the

other Processors:
ISScontrol - Sfront legs + Smiddle legs *+ Shack legs *+ Sgensor
'SSfront legs — Scontrol + Smiddle legs *+ Shack legs *+ Sgensor
!Ssmiddle legs — Scontrol + Sfront legs + Sback legs + Ssensor
!Ssback legs ~ Scontrol + Sfront legs + Smiddle legs + Ssensor
'SSsensor = Scontrol * Stront legs + Smiddle legs *+ Shack legs

When a processor is a slave, its !SS pin goes low; if the master's !SS pin goes low,
it is erroneously being selected as a slave (this can only happen if two processors request

to be master simultaneously). In this case, both processors SPI systems are reset and

> HC11: M68HC11 Reference Manual Motorola. p. 9-33.
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neither becomes master (this is done to prevent Latch-Up which can occur if both
processors try to drive the SPI system). In order to proceed they must both reset their SPI
systems and try again. To further reduce the chance of damage due to multiple processors
becoming masters, the SPI system is configured in Wired-OR mode. In Wired-OR mode,
no active high signals are produced; 10K resistors between all SPI and SCI lines and
power produces high signals when the line is not actively being pulled low. The timing
diagram for the SPI system is shown below?®

SckCydle#  [1]2[3[45[6[7[8

SCK(CPOL:O) :\:\:\:\:\:\:\:\\
MOSI N O X X X from Master
MISO (X X T XX X XX T = from Slave
1SS A A -

Figure 14: Serial Peripheral Interface (SPI) Timing

The 6811's timing system is used to implement Pulse Width Modulation for leg
motor control. The 6811 contains a 16-bit timer which can generate an interrupt when it
overflows (when the timer goes from 65535 back to 0). When running with an § MHz
clock, the timer overflows every 32.768 ms. When the timer overflows, the interrupt
routine turns all active motors on while setting the appropriate OC values to turn the
motors off when the system clock reaches the value stored in the OC register. To
generate enough torque to trigger the limit switches, these values must be greater than or
equal to 19000. The following is a diagram of the PWM waveform (it should be noted

that the frequency never changes, just the on / off times which define the duty cycle)?
Duty Cycle

wow [T T 1,
oo [ [ [ |
g [ [ 1]
70 |1 1]
s [ L[ 1
s | [ ][] ]
s% [T
3% | [ [ [
Figure 15: Pulse Width Modulation (PWM) waveform

On

L293B integrated circuits are used to implement H-bridges Each circuit can be
used to implement two full H-bridges. The enable pin of each H-bridge is the logic AND
of the Motor Enable from Port B and the PWM enable from Port A. This implementation

6 HC11: M68HCI1 E Series. Motorola. p. 8-3.
7 McComb. p. 104.
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simplifies motor control by allowing the PWM timing software to be running
continuously. A separate subroutine is used to set the Port B Motor Enable pin high or
low.

The Input Capture and Output Compare pins used to register leg interrupts and

imminent collisions and create the PWM waveforms have the following timing?

PH2

ICx PIN ‘ ‘ ‘ ‘ ‘
‘ ‘ | | | |
\ \ \ \
ICXF PIN Lo ‘ ‘ ‘ ‘
| ]
[ S N —
TIMER COUNT ><7 N-1 >< N‘ ‘>< ‘ N+1 ‘>< ‘N+2 ‘>< N+3 >< N+4
| | | | |

READ TICx (HI) | READ TICx (LO)

|
|
TIMER COUNT !>< N-1 >< N >< N+1 >< N+2
|
|

WRITE TOCx (Hl) | WRITE TOCx (LO)

|
| |
o
|
COMPARE | | | MATCH ‘ | |
ENABLE |
.
|

OCx PIN PREVIOUS PIN STATE ‘ >< NEW PIN STATE

OCxF I I
T 1 ‘
Figure 16: Input Capture (IC) and Output Compare (OC) Timing

The Port B pins used to implement Motor Enable and Direction Control are output
only. Reading Port B will return an 8-bit value representing the state of the pin, but this

is an internal value. Port C is an input/output port; it is used to determine which

8 HC11: M68HC11 Reference Manual Motorola. pp. 10-39, 10-40.
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interrupt(s) occurred when an IC interrupt (Port A) occurs. (See Also: Figure 9) The
timing for reads / writes is shown below??

j<—MCU READ OF PORT—>|
E
b D! j; Di

PORTS
A,C*D

)’

t,
[0Sy | LK, |
*FOR NON-LATCHED OPERATION OF PORT C
{«~MCU WRITE TO PORT—>|
E I
t
PwD
le——>]
PORTS  pREVIOUS PORT DATA W NEW DATA VALID
B,C,D §
1,
P,
<>
PORT A PREVIOUS PORT DATA ><><>{ NEW DATA VALID

Figure 17: Port Read / Write Timing

The timing for port reads / writes and interrupts is extremely critical, any changes
to the interrupt system must ensure that race conditions do not occur. With the use of the
wait instruction, the delay for processing an interrupt is reduced to approximately three
cycles, while it takes a minimum of four cycles (maximum of eight) for data to become
steady for a port read. This means that interrupt routines that read common signals (the
same signal that caused the interrupt is also being read) should wait a minimum of three
cycles before reading the value to avoid any chance of reading a bad value.

The Analog-to-Digital system (8-channel, 8-bit) is built into Port E of the 6811.
The system is capable of reading from up to eight different sources (one at a time). The
A/D system includes a sample-and-hold circuit to reduce the required external circuitry.
Each conversion is a sequence of eight comparison operations, beginning with the most
significant bit (MSB). A successive approximation register (SAR) is used to store the
result of each successive comparison. When a conversion is complete, the contents of
SAR are transferred to the appropriate result register. There are four result registers, and
the 6811 can be initialized to perform up to four consecutive conversions. When these
are complete, the conversion complete flag (CCF) is set. The timing for the A/D

conversion sequence is shown below:10

9 HCI11: M68HCI1 E Series. Motorola. pp. A-12, A-13.
10 ibid. p. 10-5.
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E CLOCK

|

Q MSB BIT6 | BIT5| BIT4| BIT3| BIT2 | BIT1| LSB Z
2 12 E CYCLES 4 2 2 2 2 2 2 2 2 S
o CYCLES | CYC | CYC| CYC | CYC | CYC | CYC | CYC | CYC @
= =
E < SAMPLEANALOG INPUT —  >|<— SUCCESSIVE APPROXIMATION SEQUENCE — > EN 3
x — P4
z | o < 3
| - 1
. — K »
\ - o} E
. — [

| - I &

CONVERT FIRST CONVERT SECOND CONVERT THIRD CONVERT FOURTH

CHANNEL CHANNEL CHANNEL CHANNEL
AND UPDATE ADR1 AND UPDATE ADR2 AND UPDATE ADR3 AND UPDATE ADR4
0 32 64 9% 128

E
CYCLES

Figure 18: Analog-to-Digital (A/D) Timing

The A/D system is used for monitoring sound and light intensities. Two
microphones and two photocells are monitored continuously. The A/D is initialized to
perform four consecutive reads: left microphone, right microphone, left photocell, and
right photocell. Once the values have been read, the CCF flag is set, and the system may
begin processing the results. At any time during the conversion, the IR system can
generate an interrupt, if this happens a variable is set which discards the intensity values
and the control processor is notified of the interrupt.

The control processor is the only system that uses the 6811's expanded mode In
expanded mode, up to 64K of external memory may be accessed. The memory is
overlaid by the internal registers, RAM, and EEPROM as shown earlier. The internal
RAM is left active since it has a faster access time and may be used for important
variables. The lower 32K of external memory is filled with a 62256-10 static RAM
module. This allows for extensive variables or possibly for an entire new control system
to be downloaded. The upper 32K of external memory is filled with a 27C256-15
EPROM module seated in a TEXTOOL Zero Insertion Force IC socket for easy access.
The EPROM is used to hold permanent copies of the control code. The timing for

accessing both memory modules is shown below:!!

E \ |
R/IW, Address XX X0
( Read WAddress Data|
Address/Data
k Write Address Data|
AS

Figure 19: Expanded Mode Read / Write Timing

11 ibid. p. A-20.
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In addition to the previously mentioned integrated circuits, six PAL16R4 circuits
are used to provide interrupt signals to the leg processors as well as some other functions
The PALs are needed since the interrupt generated by a limit switch must last at most for
one E clock cycle. This allows for all limit switches to trigger interrupts while others are
still being held down. The logic for the PAL 1s shown below:

UD_Opp Dir Out=!UD Opp Dir In
FB Opp Dir Out=!FB Opp Dir In

UD int.D =Up Dn Int

Floor int.D = Floor Int

FB int.D =Fwd Bkwd Int

Intr.D = (!UD int & Up Dn_Int) + (!Floor int & Floor Int) +

('FB_int & Fwd_Bkwd_Int)

The first two values are used by the direction inputs of the L386B integrate circuit
to create a H-bridge. The next three values are inputs to D flip-flops from the three limit
switches (Up / Down, Floor, and Forward / Backward). The last entry is the generated
interrupt signal which is high for only one E clock.

Each H-bridge controls a single motor. The right and left sides of the robot have
separate power supplies. In order to determine the battery characteristics required for
worst case activity, the 12 motors used in the legs were measured for running current and
stall current for three voltages. The average and maximum values were then plotted to
determine the motor characteristics. (See Figure 20 next page) It is theoretically possible
for all motors on one half of the robot to be operating at the same time. Therefore, the
battery must provide from 720 mA (at 5V) to 960 mA (at 15V) maximum; furthermore, if
a motor becomes stalled, it will approximately double its current draw. Even though the
motor will only be stalled momentarily, the battery should be able to handle the increased
current draw due to stalling. A battery with 1440 mA to 1920 mA per hour would be
ideal. Since the robot has a steady current drain (it is almost continually moving),
rechargeable batteries are a necessity. Gelled electrolyte (Gel-Cell) batteries are the best,
offering a nearly constant discharge rate until completely discharged, but are expensive
and difficult to find. Nickel-cadmium (NiCad) batteries are the next best thing, offering a
constant discharge rate until approximately % way discharged when it becomes linearly
decreasing. NiCad batteries are cheap and easy to find. Two 7.5V 1.8A/hr NiCad
batteries were purchased for the robot from a hobby store (they are typically used for

Remote Control cars). A Quick charger was also purchased with the batteries to allow
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them to be recharged within 20 minutes (the recharge sequence for the Panda Quick
Charger is as follows: 20 min. quick charge + 20 min. charger cool-down. This is
repeated for all batteries). One note about NiCad is that they can develop memories if
recharged too soon; the batteries should be recharged only after they enter the linearly
decreasing discharge state. Furthermore, allowing aNiCad battery to completely
discharge may damage it; therefore, the battery should be recharged as soon as it can be

determined that it has entered the linear region.

4 6 8 10 12 14 16
Volts (V)
= Avg. Running Current (mA
Max Running Current (mA)
= Avg. Stall Current (mA)
Max Stall Current (mA)

Figure 20: Motor Current Requirements

Biological Basis:

When designing a walking robot and investigating modes of motion, it seems
prudent to examine the walkers with the most experience. Biological walkers have spent
millennia optimizing their gaits for speed, stability, and adaptability and therefore provide
the best guidance for the design process.

Since before 1900, scientists have been studying the locomotion of animals that
move with two, four, and six legs. Muybridge, whose studies are classics in the field,
analyzed the gaits of horses and humans using successive photographs. Sixty years later,
two Yugoslavian scientists used the first mathematical methods for gait description,

framing legged motion in terms of finite limb states — planted or raised. Since then
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formulas, graphic representations, and specific terminologies have evolved to define and
further the study of gaits.

The major types of gaits developed through observation and experimentation by
investigators are either periodic or non-periodic. Periodic gaits include those that occur
naturally and provide optimal speed and stability, as well as a few developed for walking
machines. Non-periodic gaits do not appear in nature; these are all special-purpose
human inventions created for application in the aforementioned machines. Song and
Waldron offer a classification scheme for these gaits from a mechanical rather than
biological standpoint. The wave gait shown below corresponds to themetachronal one
for insects:!2

Periodic Non-periodic

Precision
Footing

Figure 21: Gait Classification

Dexterous
Periodic

Continuous
Follow-the-Leader,

Backward
Wave

Backward
Equal Phase

In the development of this project, emphasis has fallen on the periodic gaits, as
these promise to be easier to implement and will remain true to the “insect-emulation”
goals of the project. Wilson’s 1966 review of insect walking sheds light on the specific
manifestations of and physiological reasons for periodic gaits in the biological world.

In the natural world, periodic forms of locomotion can be further divided into
legless and legged categories. The former includes “eitherundulatory or peristaltic waves
which move from anterior to posterior as the animal moves forward; the waves move
opposite to the direction of locomotion.”3 The latter may include undulations of the
whole body, but these undulations, as well as the wave of limb activation, move along the
body in the direction of motion (which he terms metachronal). These phenomena are
generalized, even to the level of protozoans. Those with simple flagella follow the
“legless” model, whereas those with complex flagella act as “legged” creatures. The rest
of the animal world is readily classified by these means as well; fish fit thelegless mold,
tetrapods use metachronal waves of limb movement (at least at low speeds), and

arthropods follow a metachronal pattern with opposite appendages paired.

12 Song. p. 40.
13 Wilson. p. 115.
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Wilson notes, “Insects are no exception, but the smaller number of legs tends to
obscure this basic fact. Superficial examination of the gaits of insects reveals a
bewildering assortment of different patterns.”’# The gaits apparently differ among
species, may alter for a single insect at different speeds, and change depending upon the
number of legs allocated (or available) for walking. The apparent plasticity plastizitdt,
as introduced by Bethe) of insects’ nervous systems to allow the observed degree of
adaptation, even compensation for amputations, has in part driven the quest for
understanding of the mechanisms at work.

Extensive observation and mathematical analysis / explanation of the gaits of
insects preceded true physiological understanding of the mechanisms at work. Out of
these initial inquiries emerged an apparent set of rules for the coordination of insect

motion:!3

1. A wave of protractions (forward movements of the legs relative to the
body) runs from posterior to anterior (and no leg protracts until the one
behind is placed in a supporting position).

2. Contralateral legs of the same segment alternate in phase.

And if (based on study of Carausius morosus) the further simplifying assumption

is made that protraction time is constant, one can further specify that:
3. Protraction time is constant.
4. Frequency varies — retraction time must decrease as frequency increases.

5. The intervals between steps of the hind leg and middle leg and between the
middle leg and the foreleg are constant, while the interval between the
foreleg and hind leg steps varies inversely with frequency.

Following these five simple rules allows one to logically reconstruct the patterns
observed in insects, watching a high degree of complexity develop from a few simple
constraints. In the following patterns, the labels R, refer to the Right side of the insect

and x specifies the leg number; the labels L, refer to the Left side as shown in the figure:

14 ibid. p. 116.
15 ibid. p. 117.
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1 1
2 2
3 3

Figure 22: Gait Labels

Rules 1 and 2 give us a basic pattern for the motion of six legs. The slowest
version looks like:

— the wave proceeds posterior to anterior and the sides alternate in phase.
Speeding this pattern up requires some of the leg actions to overlap temporally,
complicating the appearance of the gait.

IT. ...R3,Rp,Rq...... R3,R2,R7...... R3,R2,R1

Now the first and last leg actions on alternate sides occur simultaneously.
Another speed-up gives:

ITT. R3,R2,R1, R3 Ro,R1, R3,R9,Rq,
Ly,L3,L», Lj,L3,Lp, Lj,L3,Lp,

Things have gotten very tight here, and a pattern of synchronous diagonal pairs
develops. This is significant in that it reproduces, through the simple model, a pattern

documented in insects. One more speed-up yields:

IV. R3)R2 (R1R3) Ry (R1R3) Ry (R1R3)
L>(L1L3) Ly (L1L3) Lo (L1L3) Lo

which is an “alternating tripod” gait. The legs paired in parentheses activate
sequentially, but the movements occur so near one another in time that they appear
simultaneous. Each front / hind pair on one side activates in apparent synchronization
with the middle leg on the opposite side. Wilson notes that “[f]or cockroaches no higher
speed gait has ever been reported.”

This would seem to be the limit of this model, but Wendler reports that in the

stick insect the delay between the front and hind leg on each side can beless than zero,
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which yields a non-metachronal sequence ...R3 Ry, Ry, R3 Ry, Rp,.... Wilson points
out that this can be counted as an overlap of the basic metachronal sequence:
R3 R2 R1

R3 Ro Rq
R3 Ry Ry

V. R3 Ry R3R7 Ry R3R7 Ry Rj

and that these “sequential patterns have been observed in insects. To [his]
knowledge, no other patterns, using six legs, have been reported for straight forward
walking. A characteristic of the model is that the insectalways stands on at least three
legs which enclose the vertical axis through the center of gravity.”1

The model outlined above is excellent for developing a basic understanding of
insect locomotion and can be applied with minimal error to most adult insects walking
with six legs. There are of course modifications which would make it more realistic and
beyond those, exceptions and deviations. One is that the interval between any two
adjacent legs may also vary with frequency, not just the interval between the fore and
hind legs. (Hughes’ (1952) more complex model takes this into account.) Another is that
insects do not always walk with six legs. Some hold the front or rear legs up and walk
with the other four. Other insects use their underside as a point of support. Insects, such
as grasshoppers, which have one proportionally large set of legs may step in phase with
the odd pair, but at lower frequency.

Additionally, “[t]here is apparent escape from the condition, ‘no leg protracts until
the one behind is placed in a supporting position,” at the highest running frequencies.’'”
Changing conditions such as turning or amputation may also result in deviations from this
rule at normal speeds. However, even amputation does not always result in an
exceptional gait.

Studies of double-amputee insects show that as a general rule, removal of any two
legs (one from each side) causes the insect to adopt the diagonal-pairs gait of atetrapod.
No learning period is required and the phenomenon may appear to be part of some
complex walking logic, a rapid adaptation or perhaps plasticity in the nervous system.
Closer examination, however, reveals that new gaits may be adaptations of existing gaits.

This is most obvious in the case where the second leg on each side is removed.

The resulting gaits observed are easily derived from intact-animal leg sequences I and II

16 ibid. p. 121. (emphasis added)
17 ibid. p. 122.
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above. In fact, II translates directly to a diagonal-pairs gait (I1a) upon removal of the

middle pair of legs.

Ia. ..R3, Ry, Ry R3,Ry,Ry.........

Close observation of the amputee often reveals that the stumps continue to
oscillate in normal phase relative to the other legs. An inefficient form of gait IV can
even be elicited by startling insect amputees. The resulting gait moves the intact legs on
each side in synchrony, so that the body rocks back and forth, in many cases dragging the
underside and hindering progress. The cockroach may execute the only effective post-
amputation version of the alternating-tripod scheme (IVa); the pair of legs on each side

cycles fast enough to arrest body roll before the abdomen drags.

IVa. R3), Ry, (R1R3),Ry, (R1R3),Ry, (R1R3)

The next step is to determine how these descriptive ‘rules’ are actually manifested
in a biological mechanism of coordination. Looking at this model, a simple explanation
might be that each leg on a side triggers the next most anterior leg, with the foreleg
triggering the hind again. This requires strict adherence to rule 1 above, and does not
explain gait V. Restraining one leg of a walking insect quickly eliminates this
mechanism as a possibility; the other five legs continue to step in regular patterns, even
without the “trigger” presumably required from the still leg. These data suggest that each
segment has an oscillatory mechanism whereby sets of legs can function semi-
independently of the others.

Experimental biologists have gathered physiological and neurological data that
offer better insight into these mechanisms. Legs of an isolated segment can step
alternately. This seems to correspond to the anatomical arrangement of the arthropod

central nervous system as shown below:
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Figure 23: Biological Network

The basic structure consists of a brain at the anterior end of the main nerve
chord, followed further down the chord by a series of ganglia — collections of motor and
sensory neuron cell bodies. There is generally a ganglion for each segment along the
length of the animal, which may house the synchronizing synapses for alternating activity
of opposite legs. Interestingly, “even after sagittal ganglionic hemisection a single leg
can step rhythmically.”!8 Cutting a ganglion in half from the dorsal to ventral along the
animal’s longitudinal centerline thus further subdivides the node into two groups of
neurons with dedicated internal clocks (one per leg). These internal clocks are known to
neurobiologists as pacemakers or central pattern generators (CPGs). CPGs are manifest
as negative-feedback chemical cycles within neurons which alter membrane properties
and change the cell’s excitability.

Assuming that ganglia coordinate each leg pair, there must also be a mechanism
by which interganglionic signals are passed to result in organized gaits. An analogous
system has been studied in the crayfish.'® Crayfish swimmerets, located ventrally in pairs
along the abdomen, beat metachronally. If the abdominal portion of the nerve cord is
dissected from the crayfish and isolated from any source of input, a rhythm of activity like
the normal one continues in the motor neurons. The activity repeats at about 1.5 Hz,
spreading from the rear forward with a delay of about 150 ms between ganglia. The
direction of spread suggests that the fifth (posterior) abdominal ganglion drives the
others. However, the rhythmic activity persists after removal of the fifth, fourth, and even
the third ganglia. Despite the autonomous activity and coordination of these ganglia, the
group can also be controlled by neurons located in anterior regions which have axons
stretching down into the abdomen. These anterior “control” neurons need not have firing
frequencies related to the rhythm of the swimmerets.

Another similar mechanism coordinates the breathing of insects. “Each ganglion

of the abdomen and thorax is capable of rhythmic respiratory control in the absence of

18 ibid. p. 126. from Ten Cata (1928).
19 Wilson. p. 127. and Herrick, informal observations.
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peripheral feedback.”20 Their intrinsic rates are different, but when coupled in the insect
the fastest ganglion drives the rest and they oscillate in synchrony.

A scheme like these can easily be imagined for the control of insect locomotion as
well. Motor ganglion may be coupled by inhibition or excitation,unidirectionally or
reciprocally, and receive control input from anterior locations demanding changes in
speed or direction. A loose coupling would allow the fastest ganglion to drive the group
under normal conditions. As the excitatory signal propagated forward it would generate
the metachronal wave of activity commonly observed. As faster action was required,
stronger control signals from the anterior would drive the various segments into closer
coordination. Each node CPG would regulate the segment to prevent reciprocal
excitations from resulting in runaway frequencies.

One last factor, of obvious importance in the gait adaptations of “odd” amputee
insects, is proprioceptive feedback. Proprioception literally means “sensing one’s own”,
and is applied in neurophysiology to the neuronal transduction of information about
muscle stretch and motion. Static observations of insects show thatproprioceptive
feedback mechanisms act to maintain posture and stability. In at least one species, hair
on the legs provides the necessary feedback?! Loading the animal does not change its
posture until the apparent limit of its muscular resistance is reached, when rapid and
complete collapse results. However, when the hairs are removed from the insect’s legs its
standing height is inversely proportional to the loading (more weight pushes its body
closer to the ground). Oscillatory inputs reveal ‘phasic reflex effects’, of which Wilson
treats ones in grasshoppers, locusts, and caterpillars?2 However, his treatment of the
phasic and tonic components of proprioceptive reflexes in cockroaches is much more
intriguing;:

A sudden and maintained change of position imposed upon
the leg results in greatly altered rate of firing of the motor
neurons which then adapt to a new steady rate which is
some function of the position. The neuromotor changes
resist the imposed movement of the leg. With oscillatory
input, the response is also oscillatory at frequencies well
above 20 [Hz]. The maximum motor output occurs before
the extreme position is reached and the phase of the output

is constant over the whole frequency range found in
walking (up to 20 [Hz]).23

20 Wilson. p. 127.
21 ibid. p. 129.

22 ibid. pp. 129-130.
23 ibid. p. 130.
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The opposite leg of the same segment always responds synchronously and 180
degrees out of phase. Occasionally activity in adjacent segments is also triggered. Such
movements are always in phase or 180 degrees out of phase, varying in sign within a
given trial. This proprioceptive reflex link between segments is weak and is not likely
fundamental to walking coordination. However, feedback within the segment will prove
essential to generating complex, “intelligent” gaits.

The cooperative synthesis of the two systems, CPG synchronization and
proprioceptive reflexes, that Wilson hypothesized from the knowledge available at that
time is consistent with more recent, extensive research on the cockroach byKeir Pearson
et al. Wilson conceived of a fundamental walking pattern generated in the ganglia,
driven from the posterior and frequency-controlled from the anterior. This mechanism
would generate the five gaits commonly observed in hexapod walking. Proprioceptive
feedback would then adjust basic gaits to maintain posture and adjust to changes in
terrain. This could explain gaits of amputees; with legs removed, the remaining legs may
have to refrain from protracting at the ‘normal’ time and wait until the next in-tact leg
begins to bear some of the load. This would account for the adoption of the diagonal-
pairs gait in double-amputee hexapods. Furthermore, variations in grade can be
automatically adjusted for, as each leg is required to bear more (retract for a longer period
of time) when climbing or less (retract quickly) when descending. The system even deals
well with slippage — a slip means that the leg is no longer supporting the body, so other
legs wait to protract while the slipped leg protracts quickly to its next footing.

Pearson et al. revealed more details of locomotive control in insects. There is a
pacemaker for each leg. All six pacemakers are coupled through reciprocal synapses,
with the closest coupling between pacemakers of the same segment. “These. . .signals are
the neural basis for the magnetic effects, the phase-dependent accelerations and
decelerations of the pacemakers.”?* The coupling coordinates the oscillations of the legs,
maintaining functional coherence which is manifest as walking gaits. Reflex feedback
from proprioceptive afferents (sensory transduction neurons) adjusts the duration and
frequency of motor neuron activity by direct synapse or throughinterneurons. The system
which generates and adjusts basic gaits is controlled from a higher level by a single
command signal. A weak command signal results in slow, loosely managed gaits. A
strong one commands fast, tightly synchronized gaits. The behavioral culmination of this
network is, as noted at the outset, phenomenal! Insect walking is purposeful and

methodic to a degree, yet it remains simultaneously very adaptive, to the point of

24 ibid. p. 135.
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appearing intelligent. Generating complexity like this from a network of simple
mechanisms is so effective in nature that Rodney Brooks et al developed subsumption
architecture to accomplish the same thing in man-made systems.

This project follows Wilson and Brooks, applying lessons from biology to an
experiment in robotics. A series of three processors act as ganglia, each controlling a pair
of legs. Switches on the legs provide proprioceptive feedback to the segment’s
“ganglion”, helping to adjust for minor variations in terrain. The ganglia processors are
linked by a common electrical “synapse” to the main processor, the brain as shown
below:

Main Processor  [-..-- -

Sensor Processor

' '
1 . 1
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Figure 24: Electronic Network Representation

Signals from the brain request leg movements with simple codes to adjust speed
and direction. A single signal may be addressed to one or more processor, allowing
synchronization of motion at varying levels of complexity. Finally, there is an “eyes-and-
ears” processor which handles IR ranging, visible light sensors, and sonic stimuli. This
processor handles the input and reduces it to an above / below threshold message with
basic directional information. The main processor accepts messages from the sensor
ganglion to incorporate into its control decisions, and in turn may command the ganglion
to heighten or reduce its sensitivity to any stimulus. As in the biological structure, basic
function responsibility is distributed over a number of subservient systems and

coordination is accomplished through behavior fusion at a higher level.

Software:

Subsumption architecture is easily implemented using the C language. Each
behavior is implemented as a subroutine. Each behavior subroutine is called in reverse
order of precedence (lowest to highest). In a simple system, subsumption may be
implemented passively; when an active lower level behavior conflicts with an active
higher level behavior, the higher level behavior subsumes the lower level behavior by
overriding any conflicts. For example, if Track Object has a higher precedence than Light

Search, and both are activated, Light Search will be called first, setting any control bits
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needed to instruct the control processor to change direction or move. WhenTrack Object
is called, it would merely reset any of the control bits that are in conflict. Non-conflicting
behaviors (or non-conflicting parts of behaviors) are left alone. This "summation" of
behaviors is called behavior fusion.

More complex implementations of subsumption architecture can define sub-
behavior precedences as well as the more global procedure precedence. Sub-behavior
precedences would allow a lower level behavior to subsume some small part of a higher
level behavior.

Complex behaviors can be created through behavior fusion. As lower level
behaviors are added, a more complex and robust control system will evolve. MuLIR's
control system is based upon the more simple passive implementation ofsubsumption
architecture. The following behaviors were implemented (in reverse precedence):
Wander, Light Avoid, Light Search, Sound Avoid, Sound Search, Avoid Object. Avoid
Object has the highest precedence since it is desirable to have the robot avoid running
into objects. It is possible for this configuration to cause a behavioral oscillation where
the robot moves towards a light / sound source, then has to avoid an object, then attempts
to move towards the source again only to have to avoid the same object again, etc. This
cannot be helped with such a simple model; however, increasing the number of behaviors

would help the robot respond appropriately to such situations by becoming bored, etc.
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Implementation

Two major mechanical problems were encountered upon mounting the legs to the
chassis. First, the middle leg should be able to fully extend when the front or rear leg is
in the same direction. The occlusion plate which triggers the hip limit switch should
trigger just before the leg assemblies come into contact. Early tests showed that this was
not the case. For both sides of the robot, legs rotating clockwise (at the hip) experienced
mechanical interference from the mechanism of the subsequent motor on the same side.
This interference is an artifact of the modular leg design process; the original range of
motion allowed by the occlusion plates was too great for incorporation into this chassis
design. The problem was solved by customizing the occlusion plates to prevent

interference :

Right Front / Left Rear Middle Occlusion Plate
Occlusion Plate

Left Front / Right Rear
Occlusion Plate

Figure 25: Modified Occlusion Plates

This redesign specializes the hardware to some extent, but there are still only three
different occlusion plate geometries. The new front occlusion plates have a 60° forward
range of motion but only 30° backward range of motion. The middle occlusion plates
have a 30° forward and 30° backward range of motion. Finally, the rear occlusion plates
have a 30° forward range of motion and a 60° backward range. These new limits prevent
the legs from interfering when the legs are fully extended. The new occlusion plates
simplify the implementation of walking gaits by ensuring that the limit switches can be
triggered and the legs cannot become tangled.

The second problem was due to a failure to calculate the available torque of the
motors at the selected voltage. The problem was that the original legs were
approximately 8.5 inches in length and the knee motors were unable to lift the robot from
a flat starting position. This problem was solved by shortening the legs to approximately
5 inches and running the batteries in series (15 Volts). However this means that only half

the current is available, limiting the gaits that may be efficiently implemented. To solve
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this problem, the legs were shortened further, the foot microswitch's trigger level was

curved around the foot, and the foot was rounded to the inside as shown below:

4- - - - - - - —

o

1n
2

\ Angled Foot
Curved Switch Lever

Figure 26: Modified Foot

These factors aided MuLIR in fully supporting its weight even with all legs almost
fully extended. The angled foot, suggested by Phil Brandenberger, reduces friction when
MuLIR is attempting to stand up. The curved switch trigger also reduces friction and
improves balance.

Problems occurred in the wiring due to a distributed ground. Distributed grounds
occur when a large current is poured into the ground which causes local peaks in the
ground. These peaks cause the ground at one location to differ from the ground at
another. The symptoms caused by a distributed ground problem can be quite serious:
false interrupts, memory corruption, etc. Observation showed that the problem occurred
only when the motors were running. By increasing the current carrying capability from
the grounds located near the motors and by attempting to have as common a ground as
possible (ie. all ground wires connect in a single location) this problem was minimized.

The code presented in Appendix A represents the extent of the tested code at the
time of printing. This code should be considered reliable and can be used (as presented)
in future projects. The SPI interprocessor communication code was tested using multiple
M68HC11EVB boards and the leg control code was also tested on a M68HC11EVB
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board using the prototype leg. The sensor code was similarly tested and subjected to both
real and simulated inputs. A problem with the infrared sensors prevented their testing.
The Sharp GP1U52X IR detector looks for light modulated with a 40 KHz carrier
centered around 1667 Hz, signals not conforming to these specifications are rejected
increasing the signal-to-noise ratio. A LM556 timer chip was used to implement these
timing constraints, but the sensors ignored all signals emitted. The output signal was
examined with an oscilloscope to confirm that the signal was correct. One problem could
be that the LEDs purchased emit light around 940 nm; Sterling Electronics claimed that
these LEDs would work with the detector, but another source suggested using 880nm
LEDs (the detector and LEDs are also available from Radio Shack; Sterling Electronics
does not provide schematics for the detector). Since the detector would not respond to
the IR signal, the IR code was not tested with real signals; however, it was tested using

simulated signals.
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Results

Time constraints prevented testing MuLIR as a whole. At the time of printing, the
subsumption control code had not been tested and some wire wrapping still remained to
be completed. However, subsystems were tested and provided encouraging results.

Using the final leg design prototype and a M68HC11EVB board, the leg control
software was extensively tested. Several problems, both software and hardware, were
identified and corrected. The final control code was extremely fault-tolerant and robust.
A hardware problem where the limit switches generated false interrupts was identified
and localized, but analysis with an oscilloscope and other similar hardware failed to
explain the problem. Finally, the software was changed to ignore interrupts occurring
within a fixed time period after movement is initiated; this solution proved quite
effective. Next, leg's range of motion was tested and basic walking patterns were tested.
From these tests, it was concluded that a complete system would be capable of
coordinated walking.

The SPI interprocessor communication system was tested using multiple
M68HCI11EVB boards. Data rates from 1.5 Mbits / sec to 2.0 Mbits / sec were recorded
using a spectrum analyzer. The communication system developed and the software
routines can be reliably used in future projects. The SPI system operates in Wired-OR
mode to reduce the possibility of processor latch-up in case of a serious programming
error.

The completed legs, with modified feet and occlusion plates, were attached to the
chassis. An alternating tripod walking gait was examined by manually operating the hip
and knee motors. The authors' plan to continue working on the control code and hope to
achieve an autonomous system before graduation. In any case, these results are
encouraging and indicate that the design was sound and should meet all design goals

(with the possible exception of goal 1).
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Conclusions

This project was an experience in real world engineering. At the beginning of this
project, the envisioned result was quite different from what was actually implemented.
For example, the original processor choice was the 8086, this was then rejected in favor
of a DSP (for running a complex neural network), this was then rejected in favor of the
6811 due to price-performance considerations. From a more mechanical point of view,
many leg prototypes were developed and rejected. Even the final leg design evolved over
time to meet all the design goals. Real research and development is a trial-and-error
process. Granted, many errors can be avoided with proper research, but some are
inevitable.

The completed system should provide an excellent basis for future projects. The
hardware and software are highly modular allowing easy extension and modification.

The authors hope that students will take advantage of the system and that it will evolve
over time. In the following section many suggestions for future projects are made. Some
come from the original design, others were conceived along the way. A fully equipped
system will provide a robust robot capable of many behaviors with high fault-tolerance.

This project was a realization of a dream long trapped in the fuzzy recesses of the
subconscious mind. The greatest thrill was watching the prototype leg behave as
instructed by the M68HC11EVB board; once this had been achieved, the rest was but a
matter of time. Hopefully anyone with similar dreams will be able to experience the joys

of successful robotic development.
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Future Projects

MuLIR was designed to be easily modified. The mechanical hardware is modular
allowing for changes to be easily introduced. Three of the easiest additions are a top, a
coat of paint, and a permanent battery mount to keep the batteries from sliding. The paint
is purely cosmetic, but the top may provide greater stability and will definitely offer more
protection to the electronics while the battery mount may improve stability. Care should
be taken in deciding where to mount the batteries so thatMuLIR's stability is maximized
and the center of gravity is maintained between the middle legs. More complex additions
include adding "whiskers" or "feelers" to the left and right sides of the front plate. The
whiskers will reduce MuLIR's chances of running into objects that do not reflect infrared
light. Sonar may also be added. The Polaroid Sonar Ranging System interfaces easily
with the 6811 and provides excellent distance determination (from 10.5" to over 35' with

accuracy to * '4"). The basic schematic is shown below:

Polaroid Board
— E Pwr
1K Pwr
PA4 <——W\— TIP120 XDCR GND [——1_
VSW
= 10K 10K
PA2 <—ﬂ»<»— FLG XDCR
10K
PA1 <—ﬂ»<»— XLG

Figure 27: Polaroid Ranging System

The Polaroid Board has six cables which are wired as follows: Yellow and
Orange to +VCC, Brown to GND, Red (VSW) to PA4, Blue (XLG) to PA1, and Green
(FLG) to PA2. VSW is set high to send a "ping" (to eliminate errors, four pulses are sent
at 50, 53, 57, and 60 KHz @ 300V). The Polaroid Board will set FLG high when the
ping is sent. Once this happens the code should begin timing. When the return ping is
detected, the XLG line will go high. At this time, the system should stop timing. The
-1,

Distance traveled is then: D = Scale- , where T¢ - Tj = the total time. Scale is a

Temp

function of temperature; the speed of sound ¢ =331.4 m/s, where Temp is the

temperature in Kelvin.
A Pyroelectric sensor (with Fresnel lens) can be added to allow MuLIR to detect
and track humans. Pyroelectric sensors are sensitive to the IR wavelength emitted by

humans. The Eltec 442-3 differential pyroelectric sensor with built-in amplifier
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interfaces directly to one of the 6811's A/D pins. As an object moves across the sensors
field, the voltage with swing from positive to negative or vice versa. This voltage swing
indicates the objects direction of motion.

Temperature gauges can be added easily from a variety of hardware. Both digital
and analog devices are readily available. Strain gauges can be added to the feet to
indicate the degree of stability of a foot; interfacing strain gauges to the A/D ports of the
leg processors is straightforward. To improve balance and allow MuLIR to navigate
uneven terrains, a mercury level sensor could be added. As the angle between the normal
to the chassis and ground varies the mercury shifts, allowing current to flow through
contacts in the sensor. This information can be used by the control processor to control
balance. More complex balancing can be achieved through gyroscopes.

One last hardware sensor addition that would prove most useful is an IR beacon
and a power monitor. As power drops, software would cause MuLIR to search out the IR
beacon. MuLIR would navigate to the beacon and dock at a recharging base located
below the sensor. A simpler design might just have MuLIR detect low power conditions
and sound a warning.

A major addition would be to redesign the communication system. Currently,
MuLIR uses the SPI system for interprocessor communication. A better system might
have a memory-mapped communications system. This would also require rewriting the
control software, but the benefits would be quite noticeable.

Further development of the senses is quite possible even without hardware
additions. Since subsumption architecture is modular, new behaviors can be added on top
of the old behaviors without difficulty. Another possibility would be to rewrite the
control code using Fuzzy Logic (which is quite similar in application tosubsumption
architecture). To increase the biological feasibility, more responsibility could be off-
loaded to the leg processors. The would enable MuLIR to operate more efficiently and
increase fault tolerance.

An interesting option is to implement multi-tasking in the control processor. Very
little code 1s necessary to implement multi-tasking on the 6811. The system timer is used
to measure the time given to any one process; when time has expired the system switches
tasks by saving the current task's registers (including the stack pointer) and then reloading
the next tasks registers. As long as enough memory is available for multiple stacks, the
system is quite simple. NOTE: There is no memory protection available in the 6811,
which could be a problem if the stack overflows! In addition to the system timer

procedure, a minimum of four routines are needed: new process (PID), kill (PID), usleep
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(ms), and wait (occurrence). Interactive C implements multi-tasking; the binaries and
source code are both available from MIT.

Other projects involve combining previous Senior Design Projects. For example,
an interface could be created to control MuLIR from the Virtual Reality system developed
by Mark Topinka ('92) and extended by Mark Rieffel ('94). Or a simple implementation
of Giray Pultar's ('94) Linear Predictive Coding could be implemented on either the
sensor processor or the control processor to have MuLIR recognize basic command
words. Other projects are certainly possible, the only limitation being the designer's
imagination!

In any addition, fault tolerance should be considered. The Computer Operating
Properly (COP) interrupt could be used to ensure that the system is still running correctly.

Further precautions should be easy to add.
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Appendix A: Software Control Systems

[NOTE: All code has been removed from this online document. Please contact the

author for more information...]

PROTOTYPE LEG CODE BEGINS
PROTOTYPE LEG CODE ENDS
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Appendix A: Software Control Systems

LEG CODE BEGINS
LEG CODE ENDS
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Appendix A: Software Control Systems

SENSOR CODE BEGINS
SENSOR CODE ENDS
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Appendix B: Pinout and Wiring Diagrams
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Figure 28: Pinout Diagrams (1 of 2)
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Figure 29: Pinout Diagrams (2 of 2)
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57




Appendix B: Pinout and Wiring Diagrams

—

[

LJ Y o
12] fs}—
Left Knee Motor (+) %E [ @% Left Hip Motor (+)
= [4] N 13— =
= © ~ = =
B w 12
Left Knee Motor (-) E vs] ;l%» Left Hip Motor (-)
] (gg = Rear Legs
73 - —
= 47K [ —
12 Ol—
I3 < (8]
14] % 7] Limit Switches
15) 6] —
= — =
16| - L5 - (4
7 ] T
= ] 5]
oo || B = s
2] = 10 1] 14
PiY i DN — m IS \
73 = 1 2 ~ L3
1K
+ — — =13 mm El b= 12
= 47K 11 o— = I - T
B W= | | & 4 M6BHC8L1E2FN g @
3 < [ EME T % o ® B
i o 7] = jfE fzj (8]
15 © (6] — ‘
S N o
= =] 19
0 g g 10K %
— g Bl—
—119 H! 100 23] 4)25][26][27][28]29]30[31[3233]
e N 0.10F w2 IEEE ] | L
r - a5
o g
T - vy
Right Knee Motor (+) k3 13] I 14 Ed Right Hip Motor (+)
= 141 B 13— | =
T B 8§ r3 It
Right Knee Motor (-) 3 6] vy] 11 53 Right Hip Motor (-)
= 17] L0} =
g 5}

Rear Select
Data

Serial Clock
Rear 1SS

Figure 32: Wiring Diagram (3 of 3)

58



Appendix B: Pinout and Wiring Diagrams

Pin | Cable Color | Description

Black DB9 Pin 1

White DB9 Pin 2 = Receive Data (RxD)

Gray DB9 Pin 3 = Transmit Data (TxD)

Purple DB9 Pin 4

Blue DB9 Pin 5 = Ground (GND)

Green DB9 Pin 6

Yellow DB9 Pin 7

Orange DB9 Pin 8

Red DB9 Pin 9

SN I N I 1S I = Rl T BN N AV BN [ S e

Brown (not connected)
Black (not connected)
White (not connected)

Gray (not connected)
Purple (not connected)

Blue (not connected)
Green (not connected)

Table 1: Serial Communications Connector Wiring

Pin | Cable Color | Description

Black Hip Motor (-)

White Hip Motor (+)

Gray IR Receiver GND

Purple IR Receiver Vce

Blue IR Emitter GND

Green IR Emitter Vcc

Yellow IR Output

Orange Hip Limit Switch Vce

Red Hip Limit Switch Output

Brown (not connected)

Black Knee Motor (-)

White Knee Motor (+)

Gray Knee Limit Switch Vcc

Purple Knee Limit Switch Output

Blue Foot Switch Vce

Green Foot Switch GND

Yellow Foot Switch Output

U, U VIS NI NI [FURINS U U JUNIN U
S NI N T N T I S N IS A I R A A Bl Rl L e

Orange (not connected)
Red (not connected)
20 Brown (not connected)

Table 2: Leg Connector Wiring
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Appendix B: Pinout and Wiring Diagrams

Pin | Cable Color | Description

Black Left Microphone Output

White Left / Right Microphone Ground

Gray Right Microphone Output

Purple (not connected)

Blue Left Photocell Output

Green Left / Right Photocell Ground

Yellow Right Photocell Output

Orange (not connected)

Red Left Front IR Power

Brown Left Front IR Ground

Black Right Front IR Power

White Right Front IR Ground

Gray (not connected)

Purple (not connected)

Blue Left Side IR Power

Green Left Side IR Ground

Yellow Right Side IR Power

Orange Right Side IR Ground

| | | | — ] — ] — | — | —
Sl Qlan|nm | wlo|=|la|C|e|an|ju|s~|w o]~

Red (not connected)
20 Brown (not connected)
21 Black Left Front IR Detector 1 (from center to outside)
22 White Left Front IR Detector 2
23 Gray Left Front IR Detector 3
24 Purple Left Front IR Detector Power
25 Blue Left Front IR Detector Ground
26 Green (not connected)
27 Yellow (not connected)
28 Orange (not connected)
29 Red (not connected)
30 Brown Right Front IR Detector 1 (from center to outside)
31 Black Right Front IR Detector 2
32 White Right Front IR Detector 3
33 Gray Right Front IR Detector Power
34 Purple Right Front IR Detector Ground
35 Blue (not connected)
36 Green (not connected)
37 Yellow (not connected)
38 Orange (not connected)
39 Red Left Side IR Detector 1 (from front to back)
40 Brown Left Side IR Detector 2
41 Black Left Side IR Detector Power
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Appendix B: Pinout and Wiring Diagrams

42 White Left Side IR Detector Ground

43 Gray (not connected)

44 Purple (not connected)

45 Blue Right Side IR Detector 1 (from front to back)
46 Green Right Side IR Detector 2

47 Yellow Right Side IR Detector Power

48 Orange Right Side IR Detector Ground

49 Red (not connected)

50 Brown (not connected)

Table 3: Sensor Connector Wiring
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Appendix C: Mechanical Diagrams
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Figure 35: Chassis Design
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Figure 34: MuLIR



Company Phone Number
Quantity  Order Number Description
CGN Company (408) 720-1814
5 M68HC811E2 Microcontroller
4 CGN1001 Basic HC11 smart socket
1 CGN1101-232 RS232/Expanded mode
smart socket
Sterling Electronics (800) 745-5500
6 L293B H-bridge integrated circuit
10 Sharp GP1U52X IR receiver unit
15 GL628 940 nm IR LED
Allied Hobbies (610) 639-7247
1 Panda Quick Charger battery charger
2 Progressive Tech 900 7.5V 1.8A/hr NiCad battery
3 Tamiya Battery Cable battery connector
Digi-Key (800) 344-4539
5 P308-ND mini-Red LED
1 P309-ND mini-Green LED
1 P310-ND mini-Amber LED
1 3M2802-ND TEXTOOL Zero Insertion
Force IC Socket
1 SRM20256LC1-ND 256K (32K x 8) CMOS
Static RAM (100 ns)
1 27C256-15/J-ND 256K (32K x 8) CMOS
EPROM (150 ns)
4 DM74LS08N-ND AND gate
2 DM74LS00N-ND NAND gate
2 LM386N-3-ND Low Voltage Audio Power
Amplifier
1 LM556CN-ND Dual Timer

Appendix D: Parts, Manufacturers, and Price List
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Price (§ each)

20.00
19.00
30.00

2.38
3.24
0.38

89.90
49.95
2.75

1.68/10
2.30/10
249/10
17.99

11.63
6.54

0.58
0.58
1.98

1.65



Appendix D: Parts, Manufacturers, and Price List

48 IN4001 50V 1A Rectifier 0.60/10

1 BC4AAL-ND 4 AA battery holder 1.06

2 P9931-ND Electret Condenser 1.34
Microphone Cartridge

34 CKN1027-ND Momentary-Off-Momentary 5.91
SPDT Toggle Switch

1 CK4016-ND On-On SPDT Pushbutton ~ 5.91
Switch

4 ED7020-ND 20 pin Strip Socket 1.03

1 CKR14G-ND 14 pin Socket Connector 1.82

6 CKR20G-ND 20 pin Socket Connector 2.14

1 CKR50G-ND 50 pin Socket Connector 3.92

1 CHW14G-ND 14 pin Protected Header 2.49

6 CHW20G-ND 20 pin Protected Header 2.91

1 CHWS50G-ND 50 pin Protected Header 5.74

2 ED4308-ND 8 pin Dual-In-Line Wire 0.92
Wrap Socket

7 ED4314-ND 14 pin Dual-In-Line Wire 1.60
Wrap Socket

6 ED4316-ND 16 pin Dual-In-Line Wire 1.83
Wrap Socket

7 ED4320-ND 20 pin Dual-In-Line Wire ~ 2.29
Wrap Socket

2 ED4328-ND 28 pin Dual-In-Line Wire ~ 3.20
Wrap Socket

1 A2047-ND DB9Y Female Connector 1.45

Newark Electronics (215) 654-1434
6 98F027 1873-13 Honeywell Plastic 2.38

Darlington Opto Switch

H&R Company (800) 848-8001

12 TM92MTR2023 Gearhead Motor 12 VDC 9.95
100 RPM

Swarthmore College Engineering Department
1 62256-10 256K (32K x 8) Static RAM
2 CdS Photocell
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Programmable Logic Array
Programmable Logic Array
470 Q Resistor

1K Q Resistor

2K Q Resistor

2.2K Q Resistor

4.7K Q Resistor

10K Q Resistor

17K Q Resistor

33K Q Resistor

560K Q Resistor

0.001 pF Capacitor
0.0015 puF Capacitor

10 uF Capacitor

On-On 4PDT Switch

4" 14 wire Ribbon Cable
3' 20 wire Ribbon Cable
1' 50 wire Ribbon Cable
AA battery

Hall Effect Microswitch
LED Holder
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A/D

afferent

Al

behavior

COP

CPG

CPU

DSP

EPROM

EEPROM

ganglion (pl. -a)

hip

IC

Interactive C

Glossary

Analog-to-Digital converter. A device which samples
analog signals and converts them to a digital value by
sampling (the conversion has a fixed resolution).

A primary sensory neuron which transduces a stimulus into
an electrochemical signal.

Artificial Intelligence. The study of creating machines or
computer programs which exhibit signs of higher
intelligence.

An action or process which is activated by sensory input.

Computer Operating Properly. An periodically generated
interrupt which tests if the microprocessor is still operating
correctly.

Central Pattern Generator. Neuronal clock or pacemaker
able to oscillate in the absence of stimulation.

Central Processing Unit. The sub-system responsible for
reading and executing code.

Digital Signal Processor. A processor capable of
performing fast operations on digital signals.

Erasable Programmable Read-Only Memory. Memory that
may be programmed and then read. The memory may be
totally erased by exposure to ultra-violet light.

Electrically Erasable Programmable Read-Only Memory.
Memory that may be programmed using high electrical
voltages. Lower voltages are used to allow the memory to
be read.

A knot-like mass of nervous tissue consisting of nerve-cell
bodies which transmit / receive nerve impulses.

The part of the leg mounted to the chassis which allows the
leg to rotate forwards / backwards propelling the robot.

Input Capture. A 6811 function which generates an
interrupt or changes the value on an external pin when an
internal state matches a specified state.

A 6811 specific implementation of the C language which
allows multi-tasking. Interactive C is available via
anonymous ftp from the MIT Media Laboratory server
cherupakha.media.mit.edu.
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interneuron

interrupt

IR

knee

LED
metachronal
MIT
MuLIR

oC

PAL

peristaltic

proprioception

PWM

RAM

register

sagittal

SCI

SPDT
SPI

Glossary

A neuron which processes and transmits signals among
other neurons.

A signal which causes the processor to save its state and
begin execution of a special section of code. Interrupts are
generally used to handle external events efficiently.
InfraRed.

The part of the leg mounted below the robot's body which
allows the leg to lift / lower.

Light Emitting Diode

Propagating forward (ie. in the direction of motion).
Massachusetts Institute of Technology
Multi-Legged Interactive Robot.

Output Compare. A 6811 function which generates an
interrupt or sets a flag when a specified external state
change occurs.

Programmable Array Logic. A device which may be
programmed by electrically blowing fuses to create specific
combinatorial logic arrangements.

Of contractions and dilations resulting in forward motion.
Literally "sense of one's own." In neurobiology, a sense of
muscle tension and motion.

Pulse Width Modulation. A method for controlling motor
speed while conserving energy.

Random Access Memory. Memory that may be read /
written at any location.

Special on-chip memory used for holding intermediary
data.

In dissection, a plane of division defined by a dorsal to
ventral and an anterior to posterior line.

Serial Communication Interface. The 6811 sub-system
which allows communication with another computer over a
serial link.

Single-Pole, Double Terminal Switch.

Serial Peripheral Interface. The 6811 sub-system which
allows interprocessor communication or external peripheral
control. The SPI sub-system uses a Master / Slave
handshaking protocol which allows only one system to
control the SPI data line.
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SPST
Subsumption Architecture

swimmeret

TOF

UART

Glossary

Single-Pole, Single Terminal Switch.

A bottom-up programming model which allows behaviors
to be easily implemented. Behaviors have priorities, a
higher priority behavior will subsume a lower priority
conflicting behavior. None conflicting behaviors fuse
(behavior fusion) to create new more complex behaviors.
In crayfish, one of a set of small paddle-like appendages
located under the abdomen which aid in swimming.

Timer Overflow. An interrupt generated when the 6811 on-
chip timer goes from its maximum 16-bit value, 65525, to
0. For the settings used in this implementation, the timer
overflows every 32.768 ms.

Universal Asynchronous Receiver / Transmitter. A 6811
sub-system which controls output from the SCI.
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